UNCLASSIFIED ## AD 275 170 Reproduced by the ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA UNCLASSIFIED NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto. # APPLIED MATHEMATICS AND STATISTICS LABORATORIES STANFORD UNIVERSITY CALIFORNIA) J Man. ## A TEST OF THE TWO-SAMPLE PROBLEM WITH NUISANCE LOCATION AND SCALE PARAMETERS, AND AN ESTIMATE OF THE SCALE PARAMETER By SAUL BLUMENTHAL #### TECHNICAL REPORT NO. 58 APRIL 16, 1962 PREPARED FOR ARMY, NAVY, AND AIR FORCE UNDER CONTRACT Nonr-225 (53) (NE-042-002) WITH THE OFFICE OF NAVAL RESEARCH ## A TEST OF THE TWO-SAMPLE PROBLEM WITH NUISANCE LOCATION AND SCALE PARAMETERS, AND AN ESTIMATE OF THE SCALE PARAMETER ру Saul Blumenthal TECHNICAL REPORT NO. 58 April 16, 1962 Prepared for Army, Navy and Air Force under Contract Nonr-225(53) (NR-042-002) with the Office of Naval Research Gerald J. Lieberman, Project Director Reproduction in Whole or in Part is Permitted for any Purpose of the United States Government APPLIED MATHEMATICS AND STATISTICS LABORATORIES STANFORD UNIVERSITY STANFORD, CALIFORNIA ### A TEST OF THE TWO-SAMPLE PROBLEM WITH NUISANCE LOCATION AND SCALE PARAMETERS, AND AN ESTIMATE OF THE SCALE PARAMETER by #### Saul Blumenthal #### I. Introduction We consider here two related problems. The first can be viewed as an extension of the classic two-sample problem which asks whether two samples have the same underlying distribution. Thus, given two independent samples X_1, \ldots, X_n ; Y_1, \ldots, Y_n where the X_i are mutually independent with common c.d.f F(x), and the Y, are mutually independent with common c.d.f G(x), the classic two-sample hypothesis is that F(x) equals G(x) and the alternative is that F(x) and G(x) are not identically equal. If the two-sample hypothesis is true and $(AX_1 + B)$ is substituted for X_{i} (i = 1,...n) (A > 0, B real) before the test is made, any consistent test for the classic problem would reject the hypothesis with a high probability. The numbers A and B represent nuisance scale and location parameters and do not affect the form of the distribution of (AX, + B). Under some circumstances, the relevant question might be whether F(x) and G(x) are of the same form even though they differ through the presence of the above mentioned scale and location parameters. Formally, the hypothesis would be that F(x) = G(Ax + B) for some unspecified pair A, B (A > 0, B real). The alternative is that the above equality does not hold. We propose a family of test statistics, all members of which lead to a consistent test of the last named hypothesis under some mild restrictions on the form of F(x) and G(x). Having described the general hypothesis which we are testing, we shall suggest some specific instances where it would be useful. The range of application will be seen to be essentially the same as that of the classic two-sample test. If the experimenter wants to test whether two distributions are identical and he knows that the measurements on the two populations have been made with instruments whose zero and scale calibrations are different, then he can use the proposed test to eliminate the effect of these extraneous factors. If he knows the numerical values of the zero and scale factors and can adjust the data to a common zero and scale, then the usual tests would be more efficient. The experimenter might consider two populations the same if they both have distributions of the same form even though they differed in a scale and location parameter. Here again the proposed test is applicable. For example, two machines might be considered interchangeable if some measurable characteristic of their output has the same distribution for each machine. It might not be feasible however at the time of making the test to adjust the machines so that the scale and location parameters of the output distributions are the same. Alternatively, through some accident, the machines might have been adjusted differently at the time the data were collected, and re-adjusted subsequently so that at the time the statistician gets the data there is no way of knowing what the relative scale and location settings were at the time of data collection. Using the proposed test, such data would not have to be discarded. A further use of the test would be to detect a "linear drift". Suppose it is believed that observations at time zero have a distribution F(x) (unspecified) and that observations at some fixed later time can be considered to be of the form AY + B where again Y has the distribution F(x). Then the proposed test will reject the hypothesis if either the distribution of Y is not F(x) or if the linear model AY + B is not correct. The second problem is that of estimating the scale parameter A, assuming that F(x) = G(Ax + B) (A > 0, B real). Again a family of estimates is proposed, each member of which provides a consistent estimate of A under the same mild restrictions on F(x) that are made for the test of hypothesis. This estimation problem could arise in several ways. After accepting H_{o} , the experimenter might want an idea of the size of the scale parameter A. Alternatively, assuming H_{o} to be true on the basis of theoretical considerations, "A" might represent some physical characteristic which the experimenter wants to measure. If he is unwilling to make specific assumptions about the type of distribution involved, the proposed estimates with their fairly weak assumptions can be used. If, alternatively, the experimenter does know more about the distributions, by "inds computing "best" estimates is too difficult, the proposed estimates might again be useful. A common problem where such an estimate is needed is in the case where a time factor introduces a linear drift into the observations. If all the X's are assumed to have been measured at time t_0 and the Y's at another time t_1 , then the assumed model would apply. In Section 2, we describe the proposed statistics in detail and discuss their properties. Section 3 consists of an example of the computations involved. The following Section is concerned chiefly with establishing the consistency of the proposed estimates and tests. The important question of the distributions or even the asymptotic distributions of the proposed statistics is discussed only briefly in Section 5. Section 6 raises some additional questions. #### 2. The Test and The Estimator (2.1) $$0 < \alpha, p \le 1; 0 < \delta < \frac{1}{2}; 0 < u < v < 1.$$ We then define the following statistics: $$(2.2) \quad S_{n} (p,\delta) = \begin{cases} (\sin \pi p / n\pi p) & i = [n-n^{1/2} + \delta] \\ i = [n^{1/2} + \delta] & (U_{i} / V_{i})^{p} & 0 $$(1/n \log n) \quad i = [n-n^{1/2} + \delta] \\ i = [n^{1/2} + \delta] \quad (U_{i} / V_{i}) \quad p = 1$$$$ $$(2.3) \quad S_{n}(p,u,v) = \begin{cases} (\sin \pi p/n\pi p(v-u)) \sum_{i=[nu+1]}^{[nv-1]} (U_{i}/V_{i})^{p} & 0$$ where [X] is the greatest integer less than or equal to X. Similarly, define $S_n^i(p,\delta)$ and $S_n^i(p,u,v)$ by replacing (U_1/V_1) by (V_1/U_1) in the corresponding definitions for $S_n(p,\delta)$ and $S_n(p,u,v)$. We desire to test the hypothesis (2.4) $$H_{0} : F(x) = G(Ax + B)$$ $$H_{1} : F(x) \neq G(Ax + B).$$ The first proposed family of tests is to reject H_o if the product $S_n(p,\delta)S_n^*(p,\delta)$ is "too large". The second proposed family of tests is to reject H_o if the product $S_n(p,u,v)S_n^*(p,u,v)$ is "too large". When F(x) and G(x) satisfy conditions (4.2) to (4.4), we show in Section 4 that $S_n(p,\delta)$ $S_n^*(p,\delta)$ converges stochastically to unity when H_o is true and to a quantity greater than unity otherwise. This implies that the proposed tests are consistent against alternatives F(x), G(x) satisfying these conditions. We show also that the tests are consistent against distributions which satisfy only condition (4.2). Derivations from condition (4.2) can lead to situations in which H_o is not true and the probability of rejecting H_o will not tend to unity as a fincreases. This can happen when one of the distributions has a flat section. An example is given by (4.30). If H_o is true and conditions (4.2) to (4.4) are violated, the test will tend to accept H_o in some cases and reject H_o in others. Under the weaker assumptions (4.1) the proposed tests based on $S_n(p,u,v)$ $S_n^t(p,u,v)$ can be shown to be consistent by the same type of argument as above. Again, violation of this condition will lead to the situation described above. Although the $S_n(p,u,v)$ family of tests requires weaker assumptions regarding the form of F(x) than does the $S_n(p,\delta)$ family to guarantee the same operating properties, the $S_n(p,u,v)$ tests require that a fixed percentage of the observations must be ignored, whereas the percentage ignored by the $S_n(p,\delta)$ family goes to zero with n. Both families of tests are invariant under separate linear transformation on the X's and Y's. This is a reasonable requirement for any test of H_0 . The choice of p would presumably be dictated by power considerations. Power depends on distributions, and we know almost nothing about these. Assuming that F(x) = G(Ax + B), we propose to estimate the scale factor A by $S_n^i(p,\delta)$ if assumptions (4.2) to (4.4) are satisfied, or by $S_n^i(p,u,v)$ if condition (4.1) is satisfied. The
consistency of these estimates follows from Theorem 2, Lemma 2, and Theorem 3. Again choice of p depends on the unknown distributions of the statistics. #### 3. Computational Example To illustrate the type of computations involved, we shall compute the scale parameter estimate $S_n'(p, .1, .9)$, with n = 10 for convenience. The X's represent ten observations which were taken from a uniform distribution on the unit interval by means of a table of random numbers. The Y's represent ten observations from a uniform distribution on the interval from zero to five. Thus the factor A to be estimated is five. The table below shows the steps needed to go from the X_1 and Y_1 to the X_1' and Y_1' (ordered values) to the U_1 and V_1 (differences) to obtain finally the estimator $S_n'(p,u,v)$. Two values of p are used, p = 1/2 and p = 1 to illustrate the two types of estimators described. | i | X _i | X; | U _i | Y | Y'i | $\mathbf{v}_{\mathtt{i}}$ | v _i /v _i | (v ₁ /v ₁) ^{1/2} | |----|----------------|-----------------|----------------|------------------|--------------------------|---------------------------|--------------------------------|--| | 1 | .72586 | .05275 | .13538 | 4.44515 | 0.06115 | 0.42775 | 3.160 | 1.778 | | 2 | .30061 | .18813 | .04203 | 0.72285 | 0.48890 | 0.23395 | 5.566 | 2.359 | | 3 | .31694 | .23016 | .05608 | 2.78165 | 0.72285 | 0.62230 | 11.097 | 3.331 | | 4 | .18813 | .28624 | .01437 | 4 .514 55 | 1.34515 | 1.43650 | 99.9 65 | 9.998 | | 5 | .05275 | .30061 | .01633 | 0.06115 | 2.78165 | 0.57620 | 3 5. 28 5 | 5.940 | | 6 | .79607 | .31694 | .03206 | 4.77130 | 3.3 57 8 5 | 1.08730 | 33.914 | g .82 4 | | 7 | .34900 | .34900 | .03940 | 0.48890 | 4.44515 | 0.06940 | 1.761 | 1.327 | | 8 | .23016 | .38840 | .33746 | 4.82835 | 4.51455 | 0 .25 675 | 0.761 | 0.872 | | 9 | . 38840 | .725 8 6 | .07021 | 1.34519 | 4.77130 | 0.05705 | 0.813 | 0.902 | | 10 | .28624 | .79607 | | 3.35785 | 4.82835 | | | l — | From (2.3), we see that to compute $S_{10}^{\prime}(1, .1, .9)$, we must sum (V_2/U_2) through (V_8/U_8) , and divide the total by (.8)(10) log 10, which is 18.421. The total is 188.350 and thus our estimate $S_{10}^{\prime}(1, .1, .9)$ is 10.225. To obtain $S_{10}^{\prime}(1/2, .1, .9)$, we sum $(V_2/U_2)^{1/2}$ through $(V_8/U_8)^{1/2}$ and divide by $(8)(10)(\pi/2)$ (since $\sin \pi/2 = 1$) which is 12.566. The total here is 29.651 and thus our estimate $S_{10}^1(1/2, .1, .9)$ is 2.360. It is seen that one estimate is more than double the true value while the other is less than half. Thus, neither is particularly good. Since the sample size is quite small, we would not expect the asymptotic properties of the estimator to have any bearing and this example can be considered as an illustration of the danger of using a small sample when the small sample properties of the statistic are not known. #### 4. Convergence of the Statistics Let X_1, \ldots, X_n ; Y_1, \ldots, Y_n and $X_1' \leq \ldots \leq X_n'$; and $Y_1' \leq \ldots \leq Y_n'$ be as described in Section 2. We shall list below regularity conditions on the distributions F(x) and G(x). These conditions will sometimes overlap, and not all of them need be satisfied for the stochastic convergence of a particular family of statistics. We state the conditions in terms of F(x) for convenience. - (4.1) For a given pair of numbers, u_o , v_o $(0 \le u_o < v_o \le 1)$ $F^{-1}(u_o)$ and $F^{-1}(v_o)$ are uniquely determined, and F(x) has on $[F^{-1}(u_o), F^{-1}(v_o)]$ a derivative f(x) which has only a finite number of discontinuities, is bounded above, and is bounded away from zero. - (4.2) F(x) has a derivative f(x) which is bounded for all x, and has only a finite number of discontinuities. Further, there exists a positive value D' such that for any value D in the open interval (0, D'), the set of points $\{x : f(x) \ge D\}$ is an interval. - (4.3) If $f[F^{-1}(r)]$ is not bounded away from zero as r approaches unity then either there is a value t(0 < t < 1) such that the quantity $d f[F^{-1}(r)]/dr$ is negative and non-increasing for r > t, or the quantity $d f[F^{-1}(r)]/dr$ approaches a finite negative limit as r approaches unity. - (4.4) If $f[F^{-1}(r)]$ is bounded away from zero as r approaches zero then either there is a value $t'(0 \le t' < 1)$ such that the quantity $d f[F^{-1}(r)]/dr$ is positive and non-decreasing for r < t', or the quantity $d f(F^{-1}(r)/dr)$ approaches a finite positive limit as r approaches zero. Note that (4.2) implies (4.1). Also, the second part of (4.2) is satisfied by every unimodal f(x). Conditions (4.3) and (4.4) can be verified by using the fact that $d f[F^{-1}(r)]/dr = d \log f[F^{-1}(r)]/dF^{-1}(r)$. Thus the condition (4.3) says that if f(x) goes to zero as x increases, then there exists a finite y such that $d \log f(x)/dx$ is non-increasing for x > y. The conditions (4.3), (4.4) are satisfied by all infinite Polya frequency functions. The exponential, normal and Weibull distributions are well-known examples. Now we shall consider the question of stochastic convergence. Let h(t) be a bounded non-negative function of t defined for $0 \le t \le 1$. For p in the interval $0 \le p \le 1$, define $H_n(p)$ as follows: $$H_n(p) = (1/n) \sum_{i=1}^{n-1} h(i/n) (U_i/V_i)^p$$, $0 (4.5)$ $$H_n(p) = (1/n \log n) \sum_{i=1}^{n-1} h(i/n)(U_i/V_i) \qquad p = 1.$$ Then we have Theorem 1. If F(x) = G(x) = x, $(0 \le x \le 1)$, then as n increases, $H_n(p)$ converges stochastically to (4.6) $$(\pi p/n \sin \pi p) \sum_{i=1}^{n-1} h(i/n) \qquad 0 $$(1/n) \sum_{i=1}^{n-1} h(i/n) \qquad p = 1 .$$$$ #### Proof: Let W_1,\ldots,W_{n-1} and Z_1,\ldots,Z_{n-1} be two independent sets of mutually independent random variables with cdf e^{-x} . Let $R_n = \sum_{i=1}^{n-1} W_n$, $T_n = \sum_{i=1}^{n-1} Z_n$. Then it is well known that $(W_1/R_n,\ldots,W_{n-1}/R_n)$ and (U_1,\ldots,U_{n-1}) have the same joint density. Similarly for $(Z_1/T_n,\ldots,Z_{n-1}/R_n)$ and (V_1,\ldots,V_{n-1}) . Also R_n is independent of $(W_1/R_n,\ldots,W_{n-1}/R_n)$ and T_n is independent of $(Z_1/T_n,\ldots,Z_{n-1}/T_n)$. Thus we need only consider the convergence of (4.7) $$(1/n) \sum_{i=1}^{n-1} h(i/n) (T_n W_i/R_n Z_i)^p 0$$ Using the strong law of large numbers, and making some straightforward computations, we find that $(T_n/R_n)^p$ converges to unity w.p.l for all p, 0 . Also, for <math>0 , we find that (4.8) $$(1/n) \sum_{i=1}^{n-1} h(i/n) (W_i/Z_i)^p$$ converges to (4.6) w.p.1. For $\frac{1}{2} \le p < 1$, the results in Gnedenko and Kolmogorof [2] on the relative stability of a sum of positive random variables with finite expectations show that (4.8) converges stochastically to (4.6). For the case p = 1, we must consider (4.9) $$(1/n \log n) \sum_{i=1}^{n-1} h(i/n) (W_i/Z_i) .$$ Again the convergence of (4.9) stochastically to (4.6) follows from results in [2] on asymptotic stability of sums of positive random variables. The boundedness of h(t) is important in all of the above convergence computations. This proves Theorem 1. Corollary 1. If $F(x) = G(x) = x \ (0 \le x \le 1)$, and $\int_0^1 h(t)dt$ exists (in the Riemann sense), as n increases, $H_n(p)$ converges stochastically to $$(\pi p/\sin \pi p)$$ $\int_{c}^{1} h(t)dt$ 0 (4.10) $$\int_0^1 h(t)dt \qquad p = 1$$ #### Proof: If $\int_0^1 h(t)dt$ exists, then as n increases, (4.6) approaches (4.10). This proves the corollary. Now suppose condition (4.1) is satisfied and let $S_n(p,u,v)$ be defined by (2.3) with $0 \le u_0 < u < v < v_0 \le 1$, where u_0 , v_0 are given in (4.1) Then we have Theorem 2. As n increases, $S_n(p,u,v)$ converges stochastically to (4.11) $$(1/(v-u))\int_{0}^{v} (g[G^{-1}(t)]/f[F^{-1}(t)])^{p} dt$$ #### Proof: If X'_{j+1} and X'_{j} are both in $[F^{-1}(u), F^{-1}(v)]$, and Y'_{j+1} and Y'_{j} are both in $[G^{-1}(u), G^{-1}(v)]$, we can write $$\begin{split} F(X_{j+1}^{i}) - F(X_{j}^{i}) &= f(\theta_{j})(X_{j+1}^{i} - X_{j}^{i}) , (X_{j}^{i} \leq \theta_{j} \leq X_{j+1}^{i}) \\ (4.12) \\ G(Y_{j+1}^{i}) - G(Y_{j}^{i}) &= g(\theta_{j}^{i})(Y_{j+1}^{i} - Y_{j}^{i}) , (Y_{j}^{i} \leq \theta_{j}^{i} \leq Y_{j+1}^{i}) . \end{split}$$ Define λ_j as $|F(X_j^i) - (j/n)|$ and λ_j^i as $|G(Y_j^i) - (j/n)|$. By the Glivenko-Cantelli theorem, we know that for any positive δ , $\max_j n^{1/2-\delta} \lambda_j$ converges stochastically to zero as n increases. Define δ_j as $|X_j^i - F^{-1}(j/n)|$. If X_j^i and $F^{-1}(j/n)$ are both in the interval $[F^{-1}(u), F^{-1}(v)]$, then since $f(x) \geq A > 0$ on this interval (by (4.1)), we have $\delta_j \leq (\lambda_j/A)$. Then if X_j^i , X_{j+1}^i , $F^{-1}(j/n)$ and $F^{-1}((j+1/n))$ are all in the interval $[F^{-1}(u), F^{-1}(v)]$, we have that $|\theta_j - F^{-1}(j/n)| \leq \delta_j + \delta_{j+1} + 1/nA$, and we can write (4.13) $$F(X_{j+1}^{i}) - F(X_{j}^{i}) = f[F^{-1}(j/n)] (X_{j+1}^{i} - X_{j}^{i}) + \gamma_{j}(X_{j+1}^{i} - X_{j}^{i})$$ where $\gamma_{\mathbf{j}} = \mathbf{f}(\theta_{\mathbf{j}}) - \mathbf{f}[\mathbf{F}^{-1}(\mathbf{j}/\mathbf{n})]$. But because of the uniform continuity of $\mathbf{f}(\mathbf{x})$ in $[\mathbf{F}^{-1}(\mathbf{u}), \mathbf{F}^{-1}(\mathbf{v})]$, the above bound for $|\theta_{\mathbf{j}} - \mathbf{F}^{-1}(\mathbf{j}/\mathbf{n})|$ and the Glivenko-Cantelli theorem, it is easily seen that $\max_{\mathbf{n}\mathbf{u}<\mathbf{i}<\mathbf{n}\mathbf{v}} |\gamma_{\mathbf{i}}|$ converges stochastically to zero as n increases. Similarly we can show that $$(4.14) G(Y_{j+1}^{i}) - G(Y_{j}^{i}) = g[G^{-1}(j/n)](Y_{j+1}^{i} - Y_{j}^{i}) + \gamma_{j}^{i}(Y_{j+1}^{i} - Y_{j}^{i})$$ where $\max_{nu < i < nv} |\gamma_i'|$ converges stochastically to zero as n increases. Denote $F(X_j') - F(X_j')$ by $W_j(j=1,\ldots,n-1)$, and $G(Y_{j+1}') - G(Y_j')$ $(j=1,\ldots,n-1)$ by Z_j . Notice that
(W_1,\ldots,W_{n-1}) and (Z_1,\ldots,Z_{n-1}) are distributed as two independent sets of sample successive differences from the uniform distribution on the unit interval. Using (4.13) and (4.14) we have $$\frac{\sum_{\text{nu} < i < \text{nv}} (g[G^{-1}(i/n)]/f[F^{-1}(i/n)])^p (w_i/Z_i)^p = \sum_{\text{nu} < i < \text{nv}} (U_i/V_i)^p + \sum_{\text{nu} < i < \text{nv}} (U_i/V_i)^p ((f(\theta_i))g[G^{-1}(i/n)]/g(\theta_j^i)f[F^{-1}(i/n)])^p -1}.$$ Using the result of Corollary 1, we have that the left side of (4.15) when properly normalized converges stochastically to (4.11). Let the appropriately normalized second term on the right side of (4.15) be represented by $\bar{S}_n(p,u,v)$. As n increases, the probability approaches unity that $|\bar{S}_n(p,u,v)|$ will be no greater than $$\begin{split} & S_n(p,u,v) \ \{(\max_{nu < i < nv} |\gamma_i|^p \ D^p + \max_{nu < i < nv} |\gamma_i^{*p}| B^p)/A^p C^p\} \\ & \text{where } 0 < A \le f(x) \le B < \infty \quad \text{for } F^{-1}(u) \le x \le F^{-1}(v), \text{ and } 0 < C \le g(x) \le D < \infty, \\ & \text{for } G^{-1}(u) \le x \le G^{-1}(v). \quad \text{Thus we have that } |\bar{S}_n(p,u,v)|/S_n(p,u,v) \text{ converges stochastically to zero as } n \quad \text{increases.} \quad \text{But } S_n(p,u,v) + \bar{S}_n(p,u,v) \end{split}$$ verges stochastically to zero as n increases. But $S_n(p,u,v) + S_n(p,u,v)$ converges stochastically to (4.11) as n increases. This proves Theorem 2. It is clear that the same proof will show that under condition (4.1), $S_n^1(p,u,v)$ (defined in Section 2) converges stochastically to (4.15) $$(1/(v-u)) \int_{u}^{v} (f[F^{-1}(t)]/g[G^{-1}(t)])^{p} dt.$$ Thus, under condition (4.1), we obtain that as n increases the statistic $S_n^*(p,u,v)$ $S_n^*(p,u,v)$ converges stochastically to $$(4.16) \qquad (1/n(v-u))^2 \left(\int_{u}^{v} (f[F^{-1}(t)]/g[G^{-1}(t)])^{p} dt \right) \left(\int_{u}^{v} (g[G^{-1}(t)]/f[F^{-1}(t)])^{p} dt \right).$$ Now, assume that conditions (4.2) to (4.4) are satisfied. Let $S_n(p,\delta)$ be given by (2.2). Then we have $\frac{Theorem \ 3.}{Theorem \ 3.} \quad \text{If} \quad F(x) = G(Ax + B), \text{ then as } n \text{ increases, } S_n(p,\delta) \text{ converges stochastically to } (1/A)^p \ .$ #### Proof: We assume that either or both of the quantities $\lim_{x \downarrow F^{-1}(0)} f(x)$, $\lim_{x \uparrow F^{-1}(1)} f(x)$ is zero. Otherwise, Theorem 2 applies. For arbitrarily chosen u, v, 0 < u < v < 1, we have (4.19) $$S_{n}(p,\delta) = (v-u) S_{n}(p,u,v) + b(n,p) \left(\sum_{i=1}^{n} (U_{i}/V_{i})^{p} + \sum_{i=1}^{n} (U_{i}/V_{i})^{p} \right)$$ $$\left(\sum_{i=1}^{n} (v_{i}/V_{i})^{p} + \sum_{i=1}^{n} (U_{i}/V_{i})^{p} \right)$$ where (4.20) $$b(n,p) = \begin{cases} \sin \pi p / n \pi p & 0$$ By Theorem 2, $(v-u) S_n(p,u,v)$ converges stochastically to We shall now investigate $\sum_{i < n-1/2+\delta} (U_i/V_i)^p$, the treatment of $\sum_{i < n-1/2+\delta} (U_i/V_i)^p$ being entirely similar. Since F(x) = G(Ax + B), we see that (Y_1, \ldots, Y_{n-1}) has the same distribution as $(A\tilde{Y}_1 + B, \ldots, A\tilde{Y}_n + B)$ where \tilde{Y} has the distribution F(x). Letting the ordered \tilde{Y}_i be $\tilde{Y}_1' \leq \ldots \leq \tilde{Y}_n'$, and the differences be $V_1' = \tilde{Y}_{1+1}' - Y_1'$ (i=1,..., n-1), we have that $\sum (U_1/V_1)^p$ has the same distribution as $\sum (U_1/AV_1')^p$. Thus we want to study the convergence of $\sum (U_1/V_1')^p$ or $\sum (U_1/V_1')^p$ using condition (4.3) and the relation (4.12), we obtain that $\sum (U_1/V_1)^p$ can be bounded above by $\sum (U_1/V_1)^p$ can be bounded above by $$(4.22) \qquad \sum_{\text{nv} \leq i < n-n} 1/2 + \delta \qquad (f(\bar{Y}_{i}^{i})/f(X_{i+1}^{i}))^{p} \{(F(X_{i+1}^{i})(-F(X_{i}^{i}))/(F(\bar{Y}_{i+1}^{i})-F(\bar{Y}_{i}^{i})))^{p}\}$$ If we can find a bound (say B) for $f(\bar{Y}_{i})/f(X_{i+1})$, then we would be through, for (4.22) would then be bounded by (4.23) $$\mathbb{F}_{\text{nv} \leq 1 \leq n}^{p} \left\{ (\mathbb{F}(X_{i+1}^{i})) / (\mathbb{F}(\bar{Y}_{i}^{i}) - (\mathbb{F}(\bar{Y}_{i}^{i})))^{p} \right\}.$$ By Corollary 1, (4.23) when normalized to agree with $S_n(p,\delta)$ converges stochastically to $(1-v)B^p$. Thus, by choosing v^* (say) sufficiently large, we will have that $$P \{b(n,p) \quad \sum_{nv < i < n-n} (U_i/V_i)_{1/2+\delta}^p \leq \epsilon\}$$ approaches unity as n increases for each v such that $v^* < v \le 1$. To bound $f(Y_1')/f(X_{1+1}')$, we note that if $\bar{Y}_1' \geq X_{1+1}'$, then unity serves as a bound. Thus we must find a bound (B') for this ratio when $\bar{Y}_1' < X_{1+1}'$. We can then take B = 1 + B'. Letting $t_1 = F(\bar{Y}_1')$ and $t_2 = F(X_{1+1}')$ (momentarily suppressing 1), we have $t_1 < t_2$, and $$(4.24) \qquad (f(\bar{Y}_{i}')/f(X_{i+1}')) = (f[F^{-1}(t_{1})]/f[F^{-1}(t_{2})]).$$ By the mean value theorem, and the fact that $f[F^{-1}(1)] = 0$, we have $$f[F^{-1}(t_1)] = (1-t_1)(-df[F^{-1}(t)]/dt)_{t=\theta_1} \qquad t_1 \le \theta_1 \le 1$$ (4.25) $$f[F^{-1}(t_2)] = (1-t_2)(-df[F^{-1}(t)]/dt)_{t=\theta_2} \qquad t_2 \le \theta_2 \le 1 \ .$$ From condition (4.3), we see that there is a value v_1 such that if t_1 , t_2 both exceed v_1 , then either $(df[F^{-1}(t)]/dt)_{t=\theta_j}$ (j=1,2) is sufficiently near a limit L, in which case the ratio (4.24) is bounded by $2(1-t_1)/(1-t_2)$, or $df[F^{-1}(t)]/dt$ is a decreasing function of t for $t \ge t_1$. In the latter case, by Lemma 1 below, we have $(1-t_1)/(1-t_2)$ as a bound for the ratio (4.24). Clearly, if $v > v_1$, then as n increases, $$P \{F(\bar{Y}_{i}^{t}) > v_{1}, F(X_{i+1}^{t}) > v_{1}, nv \leq i \leq n\}$$ approaches unity. Thus, we need only to find a bound for $[1-F(\bar{Y}_1^i)]/[1-F(X_{i+1}^i)], \ (nv \le i < n-n^{1/2+\delta}). \ \ \text{Rewriting this last ratio as}$ $$\frac{(\frac{n-1}{n}) n^{1/2-\delta} + n^{1/2-\delta} (\frac{1}{n} - F(\bar{Y}_{1}^{i}))}{(\frac{n-1-1}{n}) n^{1/-\delta} + n^{1/2-\delta} (\frac{1+1}{n}) - F(X_{1+1}^{i}))}$$ using the Glivenko-Cantelli Theorem (see Theorem 2), and noting that $[(n-i)/n^{1/2+\delta}]$ is greater than unity, we have that $$P\{([1-F(\bar{Y}_i)]/[1-F(X_{i+1}^i)] < 2, nv \le i < n-n^{1/2+\delta}\}$$ approaches unity as n increases. Putting together all of the above pieces, and noting that we can choose u,v so that (v-u) is arbitrarily close to unity, we see that $$P(|S_n(p,\delta) - (1/A)^p| < \epsilon)$$ approaches unity as n increases. This proves Theorem 3. Lemma 1. Suppose f(x) is continuous and differentiable on the interval (a,b), with f'(x) < 0 and decreasing. Let $x_1 < x_2$ be in (a,b). By the mean value theorem, (4.26) $$f(x_1) = f(b) + (x_1 - b) f'(\theta_1) \quad x_1 \le \theta_1 \le b$$, $i = 1, 2$. Then $\theta_2 \ge \theta_1$. Proof: First note that (4.27) $$f(x_1) = f(x_2) - (x_2 - x_1) (f'(\theta_3)) \quad x_1 \le \theta_3 \le x_2$$ and that $$\theta_3 \le \theta_1 \cdot \text{ If } \theta_1 < \theta_3 \text{ , then}$$ $$f(x_1) = f(b) + (b - x_1) (-f'(\theta_1)) < f(b) + (b - x_1) (-f(\theta_3)) = (b) (b$$ (4.28) $$= f(b) + (b-x_2)(-f'(\theta_3)) + (x_2 - x_1)(-f'(\theta_3)) .$$ Using (4.27) in (4.28), and noting (4.26) we have $\theta_3 > \theta_2$ which is impossible. Writing $f(x_1) = f(x_2) + (f(x_1) - f(x_2))$, then using (4.26) to represent $f(x_2)$ and (4.27) to represent $(f(x_1) - f(x_2))$ and subtracting the result from the representation of $f(x_1)$ given by (4.26), we obtain $$(4.29) 0 = (x_1 - b) f'(\theta_1) - (x_2 - b) f'(\theta_2) + (x_2 - x_1)f'(\theta_3)$$ $$= (x_2 - b)(f'(\theta_1) - f'(\theta_2)) + (x_2 - x_1)(f'(\theta_3) - f'(\theta_1)).$$ Since $\theta_3 \le \theta_1$, $f'(\theta_1) - f'(\theta_2)$ is positive, or $\theta_1 \le \theta_2$. This proves Lemma 1. In the same way that we proved Theorem 2, we can show that under the same conditions, $S_n^*(p,\delta)$ converges stochastically to A^p . Putting together these results, we have that $S_n(p,\delta)$ $S_n^*(p,\delta)$ converges stochastically to unity as n increases, when F(x) = G(Ax + B), and conditions (4.2) to (4.4) are valid. We shall now state a Lemma due to Weiss [3], which will be useful below. Lemma 2. If F(x) and G(x) are two distribution functions and u, $v (0 \le u < v \le 1)$ are two given numbers, suppose $F^{-1}(u)$, $F^{-1}(v)$, $G^{-1}(u)$, $G^{-1}(v)$ are all uniquely determined. Also suppose that F(x) has a derivative f(x) between $F^{-1}(u)$ and $F^{-1}(v)$, and G(x) has a derivative g(x) between $G^{-1}(u)$ and $G^{-1}(v)$. Then a sufficient condition that $f[F^{-1}(r)] = kg[G^{-1}(r)]$ for almost all r in [u,v] (where k is a positive constant) is that there are two constants C, D(C>0), such that F(Cx+D) = G(x) for all x in the interval $[G^{-1}(u), G^{-1}(v)]$. If in addition, f(x) > 0 between $F^{-1}(u)$ and $F^{-1}(v)$, the condition is necessary as well as sufficient. We omit the proof since it is contained in [3]. Note that Weiss omitted the condition f(x) > 0 between $F^{-1}(u)$ and $F^{-1}(v)$ and without this condition the statement is incorrect. A simple counter-example is given by the following pair of distributions: $$\begin{cases} G(x) = 0 & x \le 0 \\ = 2x(1-x) & 0 \le x \le 1/2 \\ = 1-2x(1-x) & 1/2 \le x \le 1 \end{cases}$$ $$= 1 & 1 \le x$$ $$F(x) = 0 & x \le 0 \\ = \frac{1}{4}x(1-2x) & 0 \le x \le 1/4 \\ = 1/2 & 1/4 \le x \le 3/4 \\ = 1-4(1-x)(2x-1) & 3/4 \le x \le 1 \\ = 1 & 1 \le x \end{cases}$$ Here $(f[F^{-1}(r)]/g[G^{-1}(r)]) = 2$ for all r in [0,1], except r = 1/2, but clearly G(x) + F(Cx + D) for any pair C, D (C > 0). Now we shall return to the problem of examining $S_n^*(p,\delta)$ $S_n(p,\delta)$ when conditions (4.2) to (4.4) hold but F(x) + G(Ax + B). We have Theorem 4. If F(x) + G(Ax + B) (A > 0), and conditions (4.2) to (4.4) obtain, then as n increases, for every $\epsilon > 0$, $$(4.31) \qquad P \left\{S_{n}^{\bullet}(p,\delta) S_{n}(p,\delta) + \epsilon \geq \left[\int_{0}^{1} (f[F^{-1}(t)]/g[G^{-1}(t)])^{p} dt \right] \cdot \left[\int_{0}^{1}
(g[G^{-1}(t)]/f[F^{-1}(t)])^{p} dt \right] \right\}$$ approaches unity. #### Proof: Let $S_n(p,\delta)$ and $S_n'(p,\delta)$ be represented as in (4.19). Then note that $S_n'(p,\delta)$ $S_n(p,\delta)$ can be written as (4.32) $$(v-u)^2 \, S_n^*(p,u,v) \, S_n^*(p,u,v) + B(n,p,u,v)$$ where u,v (0 < u < v < 1) are arbitrary and B(n,p,u,v) is strictly positive. By (4.17) we have that $(v-u)^2 S_n^i(p,u,v) S_n(p,u,v)$ converges stochastically to where (4.34) $$h(t) = (f[F^{-1}(t)]/g[G^{-1}(t)])^p$$. But by the Lebesgue Monotone Convergence theorem, we know that by making (v-u) close to unity, we can, for any positive ϵ , make (4.33) greater than (4.35) $$\int_0^1 h(t) dt \int_0^1 (1/h(t)) dt -\varepsilon .$$ This completes the proof of Theorem 4. Assuming the conditions (4.2) to (4.4) we can now prove the consistency of the test which rejects H_0 when $S_n'(p,\delta) S_n(p,\delta)$ is "too large." By Lemma 2, we have that when H_0 is not true, h(t) (given by 4.34) is not a constant on [0,1]. It can then be shown that is greater than unity. Thus using Theorem 4, we have that (4.37) $$P \{S_n^*(p,\delta) | S_n(p,\delta) > 1\}.$$ approaches unity as n increases. This establishes consistency when conditions (4.2) to (4.4) are satisfied. It is easily seen that conditions (4.3) and (4.4) were not essential to the argument. Thus even if only condition (4.2) holds, the test will be consistent. If condition (4.2) is violated, we must allow distributions such as those given in (4.30) and for such distributions it can not be shown that the probability (4.37) approaches unity as n increases. #### 5. Remarks About Large Sample Distributions. We shall give a heuristic argument to indicate why for some values of p, $S_n^i(p,u,v)$ and $S_n(p,u,v)$ might have a bivariate normal limiting distribution, whereas for other values of p this distribution is not possible. Similar statements can be made about $S_n^i(p,\delta)$ and $S_n(p,\delta)$. From the proof of Theorem 2, we see that $S_n^i(p,u,v)$ and $S_n(p,u,v)$ have approximately the same joint distribution as $$b(n,p) = \sum_{i=nv}^{nv} \{f[F^{-1}(i/n)]/g[G^{-1}(i/n)]\}^p = (W_i/Z_i)^p \quad \text{and} \quad (5.1)$$ $$b(n,p) = \sum_{i=nu}^{nv} \{g[G^{-1}(i/n)]/f[F^{-1}(i/n)]\}^{p} = (z_{i}/w_{i})^{p}$$ where (W_1, \ldots, W_{n-1}) and (Z_1, \ldots, Z_{n-1}) have the same joint distributions as the corresponding quantities in Theorem 2, and b(n,p) is given by (4.20). From the proof of Theorem 1, we see that the quantities in (5.1) have approximately the same joint distribution as $$b(n,p) \sum_{i=nu}^{nv} (h(i/n))^{p} (\bar{X}_{i}/\bar{Y}_{i})^{p} \qquad \text{and} \qquad$$ (5.2) $$b(n,p) \sum_{i=nu}^{nv} (1/h(i/n))^{p} (\overline{Y}_{i}/\overline{X}_{i})^{p}$$ where (5.3) $$h(i/n) = f[F^{-1}(i/n)]/g[G^{-1}(i/n)]$$ and $(\bar{X}_1, \ldots, \bar{X}_n)$ are independent random variables with c.d.f e^{-x} and $(\bar{Y}_1, \ldots, \bar{Y}_n)$ are independent random variables with c.d.f e^{-y} . Each of the quantities in (5.2) is a linear combination of independent random variables, and when p < 1/2, the first two moments of these variables are finite. Thus, the bivariate central limit theorem applies and the expressions in (5.2) have a limiting bivariate normal distribution. Thus, for p < 1/2, it is reasonable to suppose that $S_n^i(p,u,v)$ and $S_n(p,u,v)$ have a limiting bivariate normal distribution. When p = 1/2, all moments of (\bar{X}_i/\bar{Y}_i) up to the second exist, and each term in (5.2) can be shown to have a limiting normal distribution. Similarly, a bivariate limiting normal distribution for the terms in (5.2) can be obtained from a generalization of the one-dimensional result. When p>1/2, not all moments of $(\bar{X}_i/\bar{Y}_i)^p$ of order less then two exist. If one of the expressions in (5.2) had a limiting normal distribution, then the expression (5.4) $$b(n,p) = \sum_{i=nu}^{nv} (\bar{X}_i/\bar{Y}_i)^p$$ where h(i/n) is taken to be identically unity would have a normal limiting distribution. However, (5.4) is a sum of independent, identically distributed random variables, and from Cramer[1], Theorem 23, we find that a necessary condition that such a sum have a limiting normal distribution is the existence of all moments of order less than two. Thus, for p > 1/2, it is reasonable to say that in general $S_n(p,u,v)$ and $S_n(p,u,v)$ will not have a limiting bivariate normal distribution. What sort of limiting distribution these quantities do have when p > 1/2, is completely open. Thus from the viewpoint of being able to say something about asymptotic power, there is some advantage to using the tests with $p \le 1/2$ rather than those with p > 1/2. #### 6. Further Problems. Since each member of the family $S_n(p,u,v)$ (for u,v fixed) is a consistent estimator of (1/A), it follows that any linear combination of a finite number of these estimators (with the weighting factors totaling unity) will also be a consistent estimator of (1/A). Similarly, one would guess that if H(p) is a probability distribution on [0,1] then $$\int_0^1 (S_n'(p,u,v)dH(p)$$ should also be a consistent estimator of (1/A). It might be worth considering whether there is some H(p) which in some sense gives a "better" estimator than any individual $S_n(p,u,v)$. Similar remarks apply to $S_n(p,\delta)$. In this case, the limiting behavior of $S_n(p,\delta)$ as $\delta \to 0$ would also be of interest. It is possible to modify the two-sample problem treated herein so that it becomes a two population test of fit. Namely, suppose that H(x) is a given distribution function. Then under H_{Q} we have F(x) = G(Ax + B) = H(Cx + D) where A, B, C, D are real but unspecified constants (A > 0, C > 0). The question here is not whether F(x) and G(x) are the same "type" of distribution but rather whether they are both the same specific type. This modified problem can be solved by using the statistic Z_{n} proposed by Weiss [3]. Let $Z_{n}(X)$ be defined for fixed $u, v (0 \le u < v \le 1)$ by (6.1) $$Z_{n}(X) = \frac{\sum_{\substack{n \\ nu < j < nv}} h^{2} [H^{-1}(j/n)](X_{j+1} - X_{j})^{2}}{\{\sum_{\substack{nu < j < nv}} h[H^{-1}(j/n)](X_{j+1} - X_{j})\}^{2}}$$ and let $Z_n(Y)$ be defined similarly. Then from the results of [3], it is easily seen that under condition (4.1), both of the following tests are consistent - 1) Reject H_0 if $Z_n(X) Z_n(Y)$ is "too large", or - 2) Reject H_0 if $Z_n(X) + Z_n(Y)$ is "too large". Which of these two tests is better depends on their limiting power, which in turn depends on the unknown limiting distributions of the proposed statistics. #### 7. Acknowledgements. The author would like to acknowledge his indebtedness to two papers [3] and [4] by Weiss for most of the ideas contained herein. He wishes also to thank Professor G. Lieberman for many helpful suggestions in the preparation of this paper. #### References - [1] H. Cramér, Random Variables and Probability Distributions, Cambridge University Press, 1937. - [2] B. V. Gnedenko and A. N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables, Addison-Wesley, 1954. - [3] L. Weiss, "Tests of Fit in the Presence of Nuisance Location and Scale Parameters," Ann. Math. Stat., vol. 28 (1957), pp. 1016-1020. - [4] L. Weiss, "On the Estimation of Scale Parameters," Naval Res. Logistics Quart., vol. 8 (1961), pp. 245-256. #### STANFORD UNIVERSITY #### TECHNICAL REPORT DISTRIBUTION LIST #### CONTRACT Nonr-225(53) #### (NR 042-002) | Armed Services Technical Information | | Chief. Statistics Branch | | Chief Burnsy of Ordenses | | |--|----|--|---|---|---| | Agency | | Applied Sciences Division | | Quality Control Division (QCC) | | | Agency Arlington Hall Station Arlington 12, Virginia | 10 | Chief, Statistics Branch
Applied Sciences Division
Chemical Corps, U. S. Army
Fort Delrick, Maryland
Attn: Dr. Clifford J. Maloney | | Chief, Bureau of Ordnance
Quality Control Division (QCC)
Department of the Navy
Washington 25, D. C.
Attn: Dr. W. R. Pabst, Jr. | | | Minister 12 / Anguin | 10 | Attn: Dr. Clifford J. Maloney | 1 | Washington 25, U. C. | 1 | | AE DI B | | | • | Action Dr. W. R. Laust, Of. | • | | AF Plant Representative
Evendale Plant | | Chief, Dayton Air Procurement Dist. | | OL 1-1 | | | General Electric Company | | Mohile Air Material Area | | Chief
Arizona Air Procurement Dist. | | | P. O. Box 91
Cincinnati 15, Ohio | | Attn: Quality Centrol Division | | Attn: Quality Control Div. | | | Cincinnati 15, Unio | 1 | Attn: Quality Control Division
Building 70 - Area "G"
Wright-Patterson AFB, Ohio | 1 | 2875 Sky Haitor Blvd. | | | | | | • | Phoenix, Arizona | 1 | | AF Plant Representative Office
Oklahoma City Air Materiel Area | | | | | | | General Flectric Company | | Chief, Procurement-Maintenance | | Chief | | | P. O. Box 91
Cincinnati 15, Ohio | | Engineering Division Fort Monmouth, New Jersey Attn: Procurement Data Branch SIGEL-PMP-1 | | San Bernardino Air Material Area | | | Cincinnati 15, Ohio | 1 | Attn: Procurement Data | _ | Attn: Quality Control Division | | | | | Branch SIGEL-PMP-I | 1 | P. C. Box 1548 | | | Ames Research Center
Moffett Field , California
Attn: Technical Library | | | | San Diego Air Procurement Dist. San Bernardino Air Materiel Area Atin: Quality Control Division P. O. Box 1548 Old San Diego Station 4325 Pacific Hijnway San Diego 10 Colleges | | | Moffett Field, California | 1 | Chief of Ordnance
U. S. Army | | San Diego 10, California | 1 | | Atta: Technical Cibrary | 1
| U. S. Army | | | | | | | Research and Development Division Washington 25, D. C. Actn. ORD TB | | Chief I os Anneles Air Proc. Dist | | | Atlanta Air Procurement Dist. | | Aitn. ORDTB | 1 | Chief, Los Angeles Air Proc. Dist.
San Bernardino Air Materiel Area | | | Attn: Quality Control Div., WRHAQ
41 Exchange Place
Atlanta 3, Georgia | | | | Atta. Oralita Castari Divinia | | | Atlanta 3, Georgia | 1 | Chief | | Bendix Bldg. | | | | | Office of Ordnance Research | | Dendix Bidg. 1206 S. Maple Street Los Angeles, California | 1 | | Ballistics Section | | Duke University, Duke Station
Durham, North Carolina | _ | | - | | Test Branch, A & A Division | | Durnam, North Carolina | 1 | Chief | | | Test Branch, A & A Division
Yuma Test Station | | | | San Francisco Air Decomposed Dial | | | Yuma, Arizona
Attn: J. M. Anderson | 1 | Chie Survei lance Branch | | Sacramento Air Materiel Area | | | Atti: V. M. Anderson | 1 | Absence Proving Ground Manufued | | Attn: Quality Control Division | | | . | | Aberdeen Proving Ground, Maryland Attn: Mr. Bruno | 1 | Sacramento Air Materiel Area
Attn: Quality Control Division
1515 Clay Street
Oakland 12, California | 1 | | Boston Air Procurement Dist.
Army Base (MAHBQ) | | | _ | ounian 22, vario, illa | • | | Boston 10, Massachusetts | 1 | Chief of Naval Materie | | Chief | | | | - | Code M533, Room 2236 Main Navy
Department of the Navy
Washington 25, D. C. | | Chief
Atlanta Air Procurement Dist | | | Bureau of Aeronautics (AV-4422) | | Department of the Navy | | Warner Pobler Air Material Area | | | Department of the Navy | | Washington 25, D. C. | 1 | Attn: Quality Control Division
441 West Peachtree Street N.E. | | | Room 2W96, W Bul ding | | | | 441 West Peachtree Street N.E.
Atlanta, Georgia | 1 | | Department of the Navy
Room 2W96, W But ding
Washington 25, D. C.
Attn: Mr. H. R. Thoman | _ | Chief of Naval Operations
Operations Evaluation Group
OP-03EG) | | Atlanta, Occigia | 1 | | Attn: Mr. n. K. Inoman | 1 | Ope ations Evaluation Group | | | | | | | The Pentagon | | Chief
Boston Air Procurement Dirt. | | | Bureau of Ships, Code 373A | | Washington 25, D. C. | 2 | Minnielnum Air Malariai Araa | | | Washington 25 D C | | | | Attn: Quality Control Division | | | Bureau of Ships, Code 373A
Department of the Navy
Washington 25, D. C.
Attn: Mr. A. S. Marthens | 6 | Chief . Bureau of Aeronautics | | Attn: Quality Control Division
Boston Army Terminal
Boston 10, Massachuset s | | | | | Department of the Navy | | DOSTON TO, MASSACHUSEL'S | 1 | | Research Shine Code 3738 | | Chief, Bureau of Aeronautics
Department of the Navy
Washington 25, D. C.
Attn: QC Division | _ | | | | Bureau of Ships , Code 373B
Department of the Navy
Washington 25 , D . C .
Attn: Mr. P . Brown | | Attn: QC DIVISION | 1 | Chief | | | Washington 25, D. C. | _ | | | Chier St. Louis Air Procurement D'st. Oklahoma City Air Materiel Area Attn: Quality Control Division 1114 Market Street St. Louis 1, Missouri | | | Attn: Mr. P. Brown | 1 | Chief, Bureau of Yards & Docks | | Attn: Quality Control Division | | | | | Materiel Division | | 1114 Market Street | | | Bureau of Ships, Code 373C | | Department of the Navy
Washington 25, D. C.
Attn: Mr. W. Wolman, Code A600 | | St. Louis 1, Missouri | 1 | | Washington 25 D C | | Attn: Mr. W. Wolman, Code A600 | 2 | | | | Bureau of Ships, Code 373C
Department of the Navy
Washington 25, D. C.
Attn: Miss Besse B. Day | 1 | | | Chief Indianapolis Air Procurement Dist.
Mobile Air Materiel Area
Attn: Quality Control D.vision
54 Monument Circle
Indianapolis 6, Indiana | | | ••• | - | Chief, Bureau of Yards & Docks | | Attn: Quality Control Division | | | Central Contract Management Panton | | Department of the Navy | | 54 Monument Circle | | | Central Contract Management Region
Attn: Directorate, Quality Control
Wright-Patterson AFB, Ohio | | Department of the Navy
Washington 25, D. C.
Attn: Code M400 | 1 | Indianapolis 6, Indiana | 1 | | Wright-Patterson AFB, Ohio | 1 | Attit: Good: M-4-00 | _ | | | | | | | | Chief | | | Chicago Air Procurement Dist. | | Chief, Bureau of Ordnance
Department of the Navy (Ad3) | | Rochester Air Procurement Dist. | | | Attn: Quality Control Div., OCHQA | | Washington 25, D. C. | 1 | Attn: Quality Control Division | | | Chicago Air Procurement Dist.
Attn: Quality Control Div., OCHQA
5555 South Archer Avenue
Chicago 38, Illinois | 1 | • • • • | - | Gnier
Rochester Air Procurement Dist.
Middletown Air Materiel Area
Attn: Quality Control Division
20 Symington Piace, P. O. Box 1,669
Rochester 3, New York | | | Omeago 20, minors | • | Chief, Bureau of Ordnance | | Rochester 3, New York | 1 | | | | Department of the Navy | | | | | Useveland Air Procurement Dist. | | Department of the Navy
Washington 25, D. C.
Attn: Gode ReUg-3 | | Chief | | | Cleveland Air Procurement Dist.
1279 West Third Street
Cleveland 13, Ohio | | Altn: Gode ReUg-3 | 1 | Cleveland Air Procurement Dist. | | | Attn: Quality Analysis Section | 1 | | | Mobile Air Materiel Area | | | | | Chief, Bureau of Ordnance | | Attn: Quality Control Division
1279 W. Third Street
Cleveland 13, Ohio | | | Computation Division | | Department of the Navy
Washington 25, D. C.
Attn: W. S. Koontz (QcF) | | Cleveland 13, Ohto | 1 | | Computation Division Directorate of Management Analysis DCS Comptroller, Hq. USAF Washington 25, D. C. | | Attu: W. S. Koontz (OcF) | 1 | | | | DCS Comptroller, Hq. USAF | | The second test of | • | Contract None 225/521 | | | TRANSPORTED, D. C. | 3 | | | Contract None 225(53)
May 1961 | | | | | | | | | | Chief
Ballas Air Procurement Dist.
Sam Antenie Air Materiel Area
Attn: Quality Control Division
Wilson Building - Room 33B
Dallas 1, Texas | | Commanding Officer S. C. Supply Agency 225 South 18th Street Philadelphia 3, Pennsylvania Attn: Chief, SIGSU-H3d | | Commanding Officer U. S. Naval Magazine QEL) Concord, California | 1 | |--|---|---|---|--|---| | Wilson Building - Room 338
Dallas 1, Texas | 1 | | 2 | Commanding Officer U. S. Naval Mine Depot (QEL) Yorktown, Virginia | | | Chief | | Commander
U. S. Naval Air Development Center
Johnsville, Pennsylvania | 1 | Yorktown, Virginia | 1 | | Statistical Engineering Lab.
National Bureau of Standards
Washington 25, D. C. | 1 | | • | Commanding Officer U, S., Naval Propellant Plant 405) Indian Head, Maryland | 1 | | Commanding Officer Office of Naval Research Branch Office | | Commander
U. S. Naval Air Missile Test Center
Point Mugu, California
Attn: Chief Scientist | 1 | | • | | 346 Broadway
New York 13, New York
Attn: Dr. J. Laderman | 1 | | • | Commanding Officer U. S. Navai Propellant Plant Indian Head, Maryland Attn: Mr. Fred Frishman | 1 | | | • | Commanding Officer
Naval Construction Battation Center
Davisville, Rhode Island | 1 | | • | | Commanding Officer Office of Navai Research Branch Office Navy No. 100 Fleet Post Office New York, New York | | Commanding Officer
Naval Construction Battation Center
Guifport, Mississippi | | Commander
U. S. Naval Proving Ground
Dahlgren, Virginia
Attn: Technical Library | 1 | | | 2 | Gulfport, Mississippi | 1 | | • | | Commanding Officer
Office of Naval Research Branch Office
1000 Geary Street
San Francisco 9, California | 1 | Commanding Officer
Naval Construction Battalion Center
Port Hueneme, California | 1 | Commander
U. S. Naval Ordnance Test Station
China Lake, California
Attn: R. Gardner - E. Fay | ł | | Commanding Officer | | Commanding Officer U. S. Naval Ammunition Depot (QEL) | | Commander
U. S. Nayal Ordnance Test Station | | | Commanding Officer Rock Island Arxenal Rock Island , Illinois Attn: R & D Division | 1 | U. S. Naval Ammunillon Depot (QEL)
Navy No. 66 Fiect Post Office
San Francisco, California | 1 | Commander
U. S. Naval Ordnance Test Station
China Late, California
Attn: Dr. D. S. Villers
Dr. F. E. McVay | ì | | Director for Quality Assurance | | Commander
U. S. N. O. T. S. | | | | | Directer for Quality Assurance
U.S. Army Chemical Center and
Chemical Corp. Material Command
Army Chemical Center
Attn: Asst, for Quality Evaluation
Maryland | | Commander
U.S.N.O.T.S.
Pasadena Annex
3202 E. Foolhill Blvd.
Pasadena B, California | 1 | Commander
U. S. Naval Test Station
China Lake, California
Attn: Technical Library | 1 | | | 2 | Commanding Officer
U. S. Naval Ammunition Cepot (QEL)
Crane, Indiana | | Commanding Officer U. S. Naval Torpede Station (QEL) Newport, Rhode Island | | | Commanding Officer U. S. Army Chemical Procurement District | | | 1 | | 1 | | Commanding Officer U. S. Army Chemical Procurement District 290 Broadway New York 7, New York Attn: Quality Surety Division Quality Assurance Section | 1 | Commanding Officer
U. S. Naval Ammunition Depot (QEL)
St. Juliens Creek
Portsnouth, Virginia | | Commanding Officer U. S. Navai Torpedo Station Keyport, Washington Attn: Technical Library Quality Evaluation Lab. | | | | i | | 1 | Attn: Technical Library
Quality Evaluation Lab. | 1 | | Commanding Officer New York Chemical Procurement Dist. 180 Varick Street New York 14, New York Alth: Quality Surety Division | | Commanding Officer
U. S. Naval Ammunition Depot Banger (QEL)
Bremerton, Washington | 1 | Commanding Officer U. S. Naval Underwater Ordnance | | | | 1 | | | Commanding
Officer U. S. Naval Underwater Ordnance Station Nevypert, Rhode Island Attn: Technical Library | 1 | | Commanding Officer
Diamond Ordnance Fuze Lab.
Attn: Wr. N. S. Lelbman
Roem 100, Building 52
Connecticut Ave. and Van Ness Street
Washington 25, D. C. | | Commanding Officer
U. S. Naval Ammunition and Net
Depot (QEL)
Seal Beach, California | 1 | | | | Roem 100, Building 52
Connecticut Ave. and Van Hess Street
Washington 25, D. C. | 1 | Commanding General | | Commanding Officer & Director
U. S. Navai Boiler and Turbine Lab.
Naval Base
Philadelphia, Pennsylvania | 1 | | | • | Commanding General
U. S. Army Ord. Arsenal, Frankford
Atm: Mr. N. J. Miller (6130)
Bidg. 235-1
Philadelphia 37, Pa. | 1 | | | | Commanding Officer Diamond Ordinance Fuze Lab. Washington 25, D. C. Attn: Library, Rm. 211, Bidg. 92 | 1 | | • | Commanding Officer and Director
U. S. Navy Electronics Lab.
San Diego 32, California | 1 | | | - | Commanding Officer
U. S. Naval Ordnance Laboratory
Corona, California
Attn: Clayborn L. Graves, Code 63 | 1 | Commander
Materiel Laboratory
New York Naval Shipyand, Maval Bose
Brooklyn 1, New York
Attn: A, Walner | | | Commanding Officer
Diamond Ordnance Fuze Lab.
Washington 25, D. C.
Attn: H. Walter Price
Chief, Branch 62.0 | | | • | Brooklyn 1, New York
Attn: A. Walner | 1 | | | 1 | Commander
U. S. Navai Ordnance Laboratory
Surveillance Dept. MED
Cerona, California | 1 | Commanding Officer
U. S. Navy Mine Defense Lab.
Panama City, Florida | | | Commanding Officer
Dugway Proving Ground
Dugway, Utah
Attn: Richard Janssen
Materiel Testing (TD&A) | | | • | | 1 | | Attn: Richard Janssen
Materiel Testing (TD&A) | 1 | Commander U. S. Naval Ordnance Luboratory White Oak Sliver Spring, Maryland Attn: Mr. R. E. Hightower Mr. P. B. Morgan Dr. H. Ellingsen | | Commanding Officer U. S. Naval Radiological Defense Lab. San Francisco, California | 1 | | Commanding Ceneral
Ordnance Ammunition Center
Jellet, Illinois
Attn: ORDLY AR-V | | Attn: Mr. R. E. Hightower
Mr. P. B. Morgan
Dr. H. Ellingsen | 1 | | • | | Atta: ORDLY AR-V | 1 | - | | Contract None 225(53)
May 1961 | | | Commanding Officer & Director
U. S. Navy Undervater Sound Lab.
Fort Trumbuli
New London, Connecticut | 1 | Commander San Bernardino Air Materiel Area Attn: Assistant for Quality Directorate of Maintenance Engineering Norton AFB, California | | Commander Rome Air Force Depot Attn: Directorate of Supply and Services Griffiss AFB, New York | | |--|---|--|---|---|----| | Compander | | Norton AFB, California | 1 | | • | | Commander Mobile Air Materiel Area Attn: Assistant for Quality Directorate of Maintenance Engineering Brookley Air Force Base Alabama | 1 | Commander San Bernardino Air Materiel Area Attn: Quality Control Division Directorate of Procurement | | Commander
Air Materiel Force, European Area
Attn: Quality Control Office
APO 633, New York, New York | ; | | riidotina | • | and Production | | | | | Commander
Mobile Air Material Area | | Norton AFB, California | 1 | Commander Air Technical Intelligence Center Attn: (AFIN-4CI) Wright-Patterson AFB, Ohio | | | Attn: Materiel Quality Division | | Commander | | Wright-Patterson AFB, Ohio | 1 | | Commander
Mobile Air Materiel Area
Attn: Materiel Quality Division
Directorate of Supply & Services
Brookley Air Force Base
Alabama | 1 | San Bernardino Air Materiel Area
Attn: Materiel Quality Division
Directorate of Supply and
Services | | Commander Air Materiel Command Attn: Quality Control Office, MCQ Wright-Patterson AFB, Ohio | | | Commander | | Norton AFB, California | 1 | Attn: Quality Control Office, MCQ | 10 | | Mobile Air Materiel Area | | C | | Wright-Patterson AFB, Onto | 10 | | Commander
Mobile Arr Materiel Aroa
Attn: QC Division Directorate
of Procurement & Production
Brookley Air Force Base
Alabama | 1 | Commander Warner Robins Air Materiel Area Attn: Assistant for Quality Directorate of Maintenance | | Commander Middletown Air Materiel Area Attr: Assistant for Quality Directorate of Maintenance Engineering Oinsted Air Force Base Middletown, Pennsylvania | | | Commendes | | Engineering
Robins AFB, Georgia | 1 | Engineering | | | Commander Mobile Air Materiel Area Attn: Quality Control Officer, MDQ Brookley Air Force Base Alahama | | _ | | Olmsted Air Force Base
Middletown, Pennsylvania | 1 | | Brookley Air Force Base | | Commander
Warner Robins Air Materiel Area | | · - | | | Alabamá | 2 | Warner Robins Air Materiel Area Attn: Quality Control Office, WRQ Robins AFB, Gognia | 2 | Commander Middletown Als Material Assa | | | Commander | | | _ | Olmsted Air Force Base | | | Southern Air Materiel Area, Pacific | | Commander | | Middletown Air Materiel Area
Oinsted Air Force Base
Middletown, Pensylvania
Attn: MAPQC | 1 | | Southern Air Materiel Area, Pacific
Attn: Quality Control Office
Clark AFB, APO74
San Francisco, California | 1 | Warner Robins Air Materiel Area Attn: Quality Control Division Directorate of Procurement | | | | | our landson our lorna | • | & Production Robins AFB, Georgia | • | Commander
Middletown Air Materiel Area | | | Commander | | Kobins Ar B, Georgia | 1 | Middletown Air Materiel Area Attn: Materiel Quality Division Directorate of Supply | | | Attn: Quality Control Office | | Commander | | and Service
Olmsted Air Force Base
Middletown , Pennsylvania | | | Commander
Air Materiel Force, Pacific Area
Attn: Quality Control Office
FEAMCOM Air Base, APO 323
San Francisco, California | 1 | Warner Robins Air Materiel Area
Attn: Materiel Quality Division
Orectorate of Supply and | | | 1 | | Commander | | Services
Robins AFB, Georgia | 1 | Middletown Air Materiel Area | | | Commander
Northern Air Materiel Area, Pacific
Attn: Quality Control Office
FEAMCOM Air Base, APO 323
San Francisco, California | | 0 | | Commander Middletown Air Materiel Area Attn: Quality Control Division Directorate of Procurement & Production Oimsted Air Force Rase | | | San Francisco, California | 1 | Commander Oklahoma City Air Materiel Area Attn: Assistant for Quality Directorate of Maintenance | | Gimsted Air Force Base Middletown, Pennsylvania | | | Commander | | Directorate of Maintenance | | Middletown, Pennsylvania | , | | Sacramento Air Materiel Area | | Engineering Tinker Air Force Base Oklahoma City , Oklahoma | | Commander | | | Sacramento Air Materiel Area
Attn: Assistant of Quality
Directorate of Maintenance | | Oklahoma City, Oklahoma | 1 | Commander
Middletown Air Materiel Area
Attn: Quality Control Office, MAQ
Olmsted Air Force Base
Middletown, Pennsylvania | | | Engineering
McCiellan AFB, California | 1 | Commander | | Olmsted Air Force Base
Middletown, Pennsylvania | 2 | | _ | | Commander Oklahoma City Air Materiel Area Attn: Materiel Quality Division Directorate of Supply and Services | | | - | | Commander
Sacramento Air Materiel Area | | Directorate of Supply and
Services | | Commander Memories Air Force Danot | | | Commander Sacramento Air Materiel Area Attn: Quality Control Division Directorate of Procurement and Production McClellan AFB, California | | Tinker Air Force Base
Oklahoma City, Oklahoma | 1 | Commander Memphis Air Force Depot Mallory Air Force Station Attn: Directorate of Supply | | | and Production
McClellan AFB, California | 1 | | • | | | | , | - | Commander Oktahoma City Air Materiel Area Attn: Quality Control Division Directorate of Progurement and Production Tinker Air Force Base Oklahoma City, Oklahoma | | 3300 Jackson Avenue
Memphis 1, Tennessee | 1 | | Commander | | Attn: Quality Control Division | | | | | Sacramento Air Materiel Area
Attn: Materiel Quality Division
Directorate of Supply and | | and Production | | Commander Memphis Air Force Depot | | | Services McClellan AFB, California | _ | Tinker Air Force Base
Oklahoma City, Oklahoma | 1 | Mallory Air Force Station Attn: Quality Control Division | | | MCCIellan AFB, California | 1 | | | Commander Memphis Air Force Depot Mallory Air Force Station Attn: Quality Control Division Directorate of Maintenance Engineering 3300 Jackson Avenue | | | Commander | | Commander Oklahoma City Air Materiel Area | | Engineering 3300 Jackson Avenue Memphis 1, Tennessee | , | | commander
Secramento Air Materiel Area
Attn: Quality Control Office, SMQ
McClellan AFB, California | | Commander
Oklahoma City Air Materiel Area
Attn: Quality Control Offices, OCQ
Tinker AFB, Oklahoma | 2 | | • | | McClellan AFB, California | 2 | | - | Commander | | | Commander | | Commander
Rome Air Force Depot | | Commander
San Antonio Air Materiel Area
Attn: Quality Control Office, SBQ
Norton AFB, California | _ | | Commander
San Bernardino Air Materiel Area
Attn: Quality Control Office, SBQ
Norton AFB, California | | Attn: Assistant for Quality Directorate of Maintenance | | norton Ar B, California | 2 | | Norton AFB, California | 1 | Engineering Griffiss AFB, New York | | | | | | | Gratiss AFB, New York | 1 | Contract None 225(53)
May 1961 | | | Commander San Antonio Air Materiel Area Attn: Assistant for Quality Directorate of Maintenance Engl: ering Kelly Air For : Base, Texas | | Engineering Statistics Group
Research Division
New York University
New York 53 , New York | 1 | Logistics Research Project
George Washington University
707
22nd Street, N. W
Washington 7, D. C. | 1 | |--|----|--|---|--|-----| | Engl: ering
Kelly Air For : Base, Texas | 1 | | | | | | Commander
San Antonio Air Materiel Area
Attn: Materiel Quality Division | | Engineering Statistics Unit
Chemical Corps Engineering Agency
Army Chemical Center, Maryland
Attn: Mr. T. M. Vining, Chief | 1 | Milwaukee Air Procurement Dist.
Attn: Quality Control Div.
770 N. Plankinton Avenue
Milwaukee 3, Wisconsin | . 1 | | Commander San Antonio Air Materiel Area Alth: Materiel Quality Division Directorate of Supply and Services Kelly AFB, Texas | 1. | Federal Telephone and Radio Co.
100 Kingsland Road
Clifton, New Jersey | 1 | Military Medical Supply Agency
84 Sands Strect
Brooklyn 1, New York
Attn: in-Store Quality Control
Materiel Inspection Branch | | | Commander San Antonio Air Materiel Area Attn: Quality Control Division Directorate of Procurement and Production Kelly AFB, Texas | | Field Inspection Section DES Division Armed Services Medical Procurement | | | ì | | Directorate of Procurement
and Production
Kelly AFB. Texas | 1 | Armed Services Medical Procurement
Agency
84 Sands Street
Brooklyn 1, New York | | N. A. C. A.
1512 H. Street, N. W.
Washington 25, D. C.
Attn: Div. of Res. Information | | | | | | 1 | | 1 | | Commander
San Antonio Air Materiel Area
Attn: Quality Control Office, SAQ
Keliy AFB, Texas | 1 | Mrs. Dorothy Gilford, Head
Logistics and Mathematical Statistics Branch
Code 436
Office of Naval Research
Washington 25, D. C. | 3 | Newark Air Procurement Dist.
Attn: Quality Control Division
218 Market Street
Newark, New Jersey | 1 | | Commander
San Antonio Air Materiel Area | | • | | New York Air Progurement Dist. | | | Commander
San Antonio Air Materiel Area
Attn: Quality Control Division
Directorate Special Weapons
Kelly AFB, Texas | 1 | Military Clothing & Textile Supply Agency
Philadelphia Quarternaster Center
U. S. Amy
2800 So. 20th Street
Philadelphia 1, Pa.,
Attn: Policy Office, Technical Division | | New York Air Procurement Dist.
Attn: Quality Control Div.
111 East 16th Street
New York 3, New York | 1 | | Commander
Ogden Air Materiel Area
Attn: Assistant for Quality
Directorate of Maintenance
Engineering
Hill AFB, Utah | | | 1 | Office, Asst. Secretary of Defense
(R&E)
Room 3E1065, The Pentagon | | | Directorate of Maintenance
Engineering
Hill AFB, Utah | 1 | Headquarters
San Bernardino Air Materiel Area
U. S. Air Force
Norton AFB, California
Attn: Chief, Planning & Control Offices | | Room 3E1065, The Pentagon
Washington 25, D. C.
Attn: Technical Library | 1 | | Commander
Ogden Air Materiel Area
Attn: Materiel Quality Division | | | 1 | Operations Analysis Office
Headquarters, Pacific Air Forces
U. S. Air Force, APO/53
Attn: C. E. Thompson
Senior Analyst
San Francisco, California | • | | Commander
Ogden Air Materiel Area
Attn: Materiel Quality Division
Directorate of Supply
and Services
Hill AFB, Utah | 1 | Headquarters U. S. Army Signal Equipment Support Agency Fort Monmouth, New Jersey Attn: SIGFM/E3-PPE | 1 | | 1 | | Commander Opden Air Materiel Area A'th: Quality Control Division Directorate of Procurement and Production Hill AFB, Utah | | Headquarters AMG Ballistic Missiles Center, USAF Air Force Unit Post Office Atin: E. J. Lancaster, Deputy for Quality Assurance Los Angeles 45, California | | Office, Chief of Engineers Department of the Army Washington 25, D. C. Attn: Procurement Division Military Supply | 2 | | and Production
HIII AFB, Utah | 1 | Attn: E. J. Lancaster, Deputy
for Quality Assurance
Los Angeles 45, California | 1 | | | | Commander
Ogden Air Materiel Area
Attn: Quality Control Office, OOQ
Hill AFB, Utah | | | | Office of Operation Analysis
DCS/Operations
Eigin AFB, Florida | 1 | | | 2 | Industrial Division Office, Chief of Ordnance Department of the Army Washington 25, D. C. Attn: Mr. Seymour Lorber | 1 | Office of Technical Services Department of Commerce Washington 25, D. C. | 1 | | David Taylor Model Basin
Applied Mathematics Lab. (Code 820)
Washington 7, D. C.
Attn: Dr. Julius Lieblein | 1 | Inspection and Quality Control Div. Office, Asst. Secretary of Defense | | Office of the Chief
(R&D), U. S. Army
Arlington Hall Station
Arlington, Virginia
Atin: Dr. I. R. Hershner, Jr. | | | Detroit Air Procurement Dist. Attn: Quality Control Div., MOHDQ W. Warren Avenue & Lonyo Bivd. Detroit 32, Michigan Attn: MOHDQPQ | | Washington 25, D. C.
Attn: Mr. Irving B. Altman | 1 | | 1 | | | 1 | Inspection and Quality Control Div. Office, Asst. Secretary of Defense (S&L) Washington 25. D. C. | | Officer in Charge
U. S. Navy Central Torpedo Office
Newport, Rhode Island
Attn: Mr. G. B. Habicht | 1 | | Director
National Security Agency
Attn: REMP-1
Fort George G Meade | | | 1 | | • | | maryranu | 1 | Library
Institute for Defense Analysis
Communications Research Division
Von Neumann Hail
Princeton, New Jersey | _ | Ordnance Corps
Industrial Engineering Div.
Diamond Ordnance Fuze Lab.
Washington 25, D. C. | 1 | | Director, Development Division
Field Command
Armed Forces Special Weapons Project
Albuquerque, New Mexico | | i ibeneloo | 1 | Ordnance Mission White Sands Proving Ground Las Cruses, New Mexico Attn: Mr Paul G. Cox | | | | • | Numerical Analysis Research
University of California | 1 | | 1 | | Eastern Contract Management Region
Attn: Directorate, Quality Control
Dimsted AFB, Pennsylvania | • | Logistics Research Division Altn. MCFR | | Philadelphia Air Procurement Dist.
Attn: Quality Control Division
1411 Walnut Street
Philadelphia 2, Pennsylvania | 1 | | | , | Wilgin-Factorion AFD, Unio | 1 | | | Contract None 225(53) May 1961 | Physical Research Branch
Evans Signal Lab., SCEL
Belmar, New Jersey
Attn: Mr. Joseph Weinstein | 1 | U. S. N. O. T. S.
Pasadena Annex
3202 E. Foothill Blvd.
Pasadena B. California
Attn: Mr. S. Gespar | 1 | Dr. A. Charnes
The Technological Institute
Northwestern University
Evanston, Illinois | 1 | |--|---|--|---|--|---| | The RAND Corporation
1700 Main Street
Santa Montea, California
Attn: Library | 1 | Western Contract Management Region
Attn: Directorate, Quality Control
Mira Loma AF Station, California | 1 | Mr. W. H. Clatworthy
Bettis Pian, Westinghouse
Electric Corporation
Box 1468
Pittsburgh 30, Pennsylvania | 1 | | Report Library
University of California
Los Alamos Scientific Lab.
P. O. Box 1663
Los Alamos, New Mexico | 1 | Dr. Adam Abruzzi
Dept. of Economics and Engineering
Stevens Institute of Technology
Hoboken, New Jersey | 1 | Professor Paul Clifford
New Jersey State Teachers College
Montciaire , New Jersey | 1 | | Rouket Development Group
Resistone Arsenai
Huntsvill: Alabama
Attn: _t, E, t., Bombara | 1 | Mr. William E. Gilbert, Chief
Mathematical Statistics Branch
Atomic Energy Commission
Washington 25, D. C. | 1 | Professor W. G. Cochran
Department of Statistics
Harvard University
Cambridge , Massachusetts | 1 | | San Francisco Air Procurement Dist.
Attn: Quality Control Division
Oakland Army Terminal, Bldg. 1
West Grand & Maritime
Oakland 14, California | 1 | Professor T. W. Anderson
Department of Mathematical Statistics
Columbia University
New York 27, New York | 1 | Professor C. C. Cockerham
Institute of Statistics
State College Section
North Carolina State College
Raleigh, North Carolina | 1 | | Scranton Orunance Plant
156 Cedir Avenue
Scranton, Pennsylvania
Attn: Mr. Carl D. Larsen
Chief Inspector | 1 | Professor Fred C. Andrews
Mathematics Department
University of Oregon
Eugene, Oregon | 1 | Professor Edward P. Coleman
Engineering Department
University of California
Los Angeles 24, California | 1 | | Special Project Office | 1 | Dr. Max Astrachan
Department of Logistic
The RAND Corporation
1700 Main Street
Santa Monica, California | 1 | Dr. Louis Court
Division 17
National Bureau of Standards
Washington 25, D. C. | 1 | | SP2016 Department of the Novy Washington 25, D. J. Attr. Dr. H. Weingarten | 1 | Professor Robert Bechhofer
Sibley School of Mech. Engineering
Cornell University
Ilhaca, New York | | Miss Gertrude M. Cox
Institute of Statistics
North Carolina State College
Raleigh, North Carolina | 1 | | Standards Branch
P. Lourement Division
DCS Logistics, U.S. Army
Warthreton 25, U.S. Army
Attn: Mr. Silas Williams, Jr. | 1 | Ithaca, New York Dr. R. E. Beckwith Aeronutronic Ford Road | 1 | Dr. Joseph Daly
U. S. Census Bureau
Washington 25, D. C. | 1 | | Statistical Laby Ary
University of Carnornia
Berkeley 4. California | 1 | Professor J. N. Berrettoni
Western Reserve University
Cleveland, Ohio | 1 | Professor Cyrus Derman
Department of
Industrial Engineering
Columbia University
New York 27, New York | | | Technical Information Officer
Naval Research Laboratory
Washington 25, D. C. | 6 | Mr. Carlton M. Beyer Office of Guided Missiles Viluse of Asst. Secretary of Defense | 1 | Mr. H. F. Dodge
Rulgers University
New Brunswick, New Jersey | 1 | | Technical Operation, Inc.
and C. O. R. G.
Hq. Continental Army Command
Fort Monroe, Virginia | 1 | Washington, D. C. | 1 | Dr. Francis Dresch
Stanford Research Institute
333 Ravenswood Avenue
Mento Park, California | | | U. S. Naval Avionics Facility
Indianapolis 18, Indiana
Attn: Library | 1 | Professor Z. W. Birnbaum
Soratory of Statistical Research
separtment of Mathematics
University of Washington
Seattle 5, Washington | 1 | Menio Park, California Professor Acheson J. Duncan Department of industrial Engineering Johns Hopkins University Baltimore 18, Maryland | 1 | | U. S. Navoi Engineering Experiment
Station
Anapolis, Maryland
San: Mr. F. R. DelPriare | , | Professor Russell Bradt
Department of Mathematics
University of Kansas
Lawrence, Kansas | 1 | | 1 | | U. S. Navai Inspector of Ordnance
400 S. Beiger Street
Mishawaka, Indiana | 1 | Professor Irving W. Burr
Department of Mathematics
Purduc University
Lafayette, Indiana | 1 | Professor Meyer Dwass Department of Mathematics Northwestern University Evanston, Illinois Professor D. A. S. Fraser | 1 | | U. S. Naval Inspector of Ordnance
Eastman Kodak Company
50 W. Main Street
Rochester 14, New York | 1 | Mr. G. Burrows
Knolls Atomic Power Lab
Schenectady, New York | 1 | Professor D. A. S. Fraser
Department of Mathematics
University of Toronto
Toronto 5, Canada | 1 | | U. S. Naval Inspector of Ordnance
Statistics Department
Naval Gun Factory
Washington, D. C.
Attn: C. D. Hock | 1 | Captain A. E. Chapman
AFPR
Boeing Aircraft Corporation
Seattle, Washington | 1 | | | | | | | | | | Contract None 225(53) May 1961 | Mr. Bernard P. Goldsmith
Associate Professor
Northwestern University
Huntiligton Avenue
Boston 15, Massachusetts | 1 | Professor W. D. Jones
Department of Statistics
Michigan State University
East Lansing, Michigan | 1 | D. E. Newnham
Chief, Industrial Engineering Division
Comptroller
Edges., San Bernardino Air Materiel
Area
Norton Air Force Base, California | 1 | |--|---|---|---|---|---| | Professor Leo A. Goodman
Statistical Research Center
University of Chicago
Chicago 37, illinois | 1 | Mr. J. P. Keamey
Quality Control Division
General Services Administration
Room 6316, Region 3 Building
Washington 25, D. C. | 1 | Professor J. Neyman Department of Statistics University of California Berkeley 4, California | 1 | | Mr. Leon Gilford
Operations Research Inc.
8605 Cameron Street
Silver Springs , Maryland | 1 | Professor Oscar Kempthome
Statistics Laboratory
Iowa State College
Ames, Iowa | 1 | Mr. Monroe Norden
Research Division
College of Engineering
New York University
New York S3, New York | 1 | | Dr. J. Greenwood
Directorate of Intelligence
Hg., U. S. Air Force
Washington 25, D. C. | 1 | Professor Solomon Kullback
Department of Statistics
George Washington University
Washington 7, D. C. | 1 | Mr. Fred Okano National Aeronautics & Space Administration Rational Aeronautics & Space Administration Reliability & Systems Analysis Office Room A-131 1520 "H" Street, N. W. Washington 25, D. C. | | | Professor Frank M. Gryna, Jr.
University College
Rutgers University
New Brunswick, New Jersey | 1 | Dr. Carl F. Kossack
Statistics and Operations Research
Research Senter - IBM
P. O. Box 218, Lamb Estate
Yorktown Heights, New York | 1 | Professor F. C. Olds | 1 | | Dr. Donald Guthrie
Stanford Research Institute
333 Ravenswood Avenue
Menlo Park, California | 1 | Mr. Howard Laitin
The RAND Corporation
1700 Main Street
Santa Monica, California | 1 | Professor E. R. Ott Department of Mathematics Carnegle Institute of Technology Pittsburgh 13, Pennsylvania Professor E. R. Ott Department of Mathematics | 1 | | Dr. Theodore E. Harris
The RAND Corporation
1700 Main Street
Santa Monica, California | 1 | Dr. E. L. LeClery, Chief
Blometrical Services
Agricultural Research Service, USDA
Beltsville, Maryland | 1 | Rutgers University
New Brunswick, New Jersey | 1 | | Dr. Leon H. Herback
Department of Mathematics
New York University
New York 3, New York | 1 | Professor Sebastian B. Littauer
411 Engineering Building
Columbia University
New York 27, New York | 1 | Mr. Cyril Peckham
Project Globe
University of Dayton
Dayton, Ohio | 1 | | Professor W. Hirsch
Institute of Mathematical Sciences
New York University
New York 3, New York | 1 | Dr. Eugene Lukacs
Department of Mathematics
Catholic University
Washington 17, D. C. | | Or. Richard Post Department of Mathematics San Joss State College San Jose, California | 1 | | Dr. Paul G. Hoel
Department of Mathematics
University of California
Los Angeles 24, California | 1 | Dr. Robert Lundegard Logistics and Mathematical Statistics Peanch | 1 | Professor P. H. Randolph
Purdue University
Department of Industrial Engineering
Larayette, Indiana | 1 | | Professor Harold Hotelling
Associate Director
Institute of Statistics
University of North Carolina
Chapel Hill, North Carolina | | Office of Naval Research
Washington 25, D. C.
Professor Frank Massey
School of Public Health
University of California
Los Angeles 24, California | 1 | Professor George J Resnikoff
Department of Industrial Engineering
Illinois Institute of Technology
Chicago 16, Illinois | 1 | | Chapel Hill, North Carolina Professor L. Humwicz School of Business Administration University of Minnesota Minnesota | 3 | Los Angeles 24, California Professor G. W. McElrath Department of Industrial Engineering University of Minnesota Minneapolis 14, Minnesota | 1 | Dr. Paul R. Rider
Chief Statistician
Aeronautical Research Lab., WADC
Wright-Patterson AFB, Ohio | 1 | | | 1 | Da. Paul Maura | 1 | Professor Herbert Robbins
Mathematical Statistics Department
Columbia University
New York 27, New York | 1 | | Mr. Rudolf Husser
Visiting Research Mathematicians
Numerical Analysis Research
University of California
Los Angeles 24, California | 1 | Department of Mathematics
Washington State University
Pullman, Washington | 1 | Dr. Harry G. Romig
351 Alma Real Drive
Pacific Palisades, California | 1 | | Dr. James R. Jackson
Management Sciences Research Project
63 Administration Building
University of Culifornia
Los Angeles 24, California | 1 | Dean Paul E. Mohn
School of Engineering
University of Buffalo
Buffalo, New York | 1 | Dr. Harry Rosenblatt
Statistical Research Division
Bureau of Census
Washington 25, D. C. | 1 | | Dr. W. C. Jacob
Agronomy Department
University of Illinois
Urbana, Illinois | 1 | Mr. R. B. Murphy
Bell Telephone Laboratories, Inc.
463 West Street
New York 14, New York | 1 | Professor Murray Rosenbinti
Department of Mathematics
Brown University
Providence, Rhode Island | 1 | | | | | | • | | Contract None 225(53) May 1961 | Professor Herman Rubin | | Professor Mason Wescott
Editor, Industrial Quality Control
Rutgers University
New Brunswick, New Jersey | | Other Foreign Addresses | | |---|---|--|---|---|----| | Department of Statistics
Michigan State University
East Lansing , Michigan | | Rutgers University | | | | | East Lansing, Michigan | 1 | New Brunswick, New Jersey | 1 | Professor Maurice H. Beltz | | | | | Declarece C C Wille | | University of Melbourne
Carlton N. 3
Victoria, Australia | | | Frofessor Norman Rudy
Statistics Department | | Professor S. S. Wilks
Department of Mathematics
Princeton University
Princeton, New Jersey | | Victoria, Australia | 1 | | Statistics Department Sacramento State College Sacramento, California | 1 | Princeton University Princeton . New Jersey | 1 | | | | Sacramento, Carrottua | - | | _ | Professor Tosio Kitagawa
Mathematical Institute
Faculty of Science
Kyusyu University
Fukuoka, Japan | | | Miss Marion M. Sandomire | | Professor J. Walfowitz | | Faculty of Science | | | U. S. Department of Agriculture | | Professor J. Wolfowitz
Department of Mathematics
Cornell University | | Fukuoka, Japan | 1 | | Miss Marion M. Sandomire
U. S. Department of Agriculture
Western Regional Laboratory
Biometrical Services
Albany 10, California | 1 | Ithaca, New York | 1 | | | | Albany 10, California | 1 | | | Kenichi Koyanagi
Managing Director
Union of Japanese Scientists | | | Denferent Dichard Sayana | | Or. Max A. Woodbury
Department of Mathematics | | Union of Japanese Scientists | | | School of Business Administration | | College of Engineering | | 4 Engineers
2, 1-chome, Cyobashi
Chus-ku, Tokyo, Japan | | |
Professor I. Richard Savage
School of Business Administration
University of Minnesota
Minneapolis, Minnesota | 1 | College of Engineering
New York University
New York 53 , New York | 1 | Chua-ku, Tokyo, Japan | 1 | | | | | | | | | Professor L. J. Savage
Mathematics Department
University of Michigan
Ann Arbor, Michigan | | Statistica de OND Landas | | Dr. Lai Verman
Director | | | Mathematics Department
University of Michigan | | Distribution via ONR London | | Director
Indian Standards Institute
New Delhi, India | 1 | | Ann Arbor, Michigan | 1 | Commanding Officer | | resw Denni, mais | • | | | | Beanch Office | | Professor P. C. Mahatanobis | | | Professor Henry Schelle
Department of Statistics | | Navy No. 100
Fleet Post Office
New York, New York | | Indian Statistical Institute | | | Professor Henry Scheffe
Department of Statistics
University of California
Berketey 4, California | 1 | New York, New York | | Professor P. C. Mahatanobis
Indian Statistical Institute
203 Barrackpore Trunk Road
Calculta 35, India | 1 | | Berkerey 4, Carnomia | • | B B 11 1 | | | | | Professor Robert Schlaifer | | Dr. William R. Buckland
22 Hyder Street
London S. W. 1
England | | N. T. Mathew, SRC Unit
India Statistical Institute | | | Professor Robert Schlaffer
Graduate School of Business | | London S. W. 1 | 1 | 8 King George Road
New Delhi, India | | | Administration
Harvard University
Boston 63, Massachusetts | | England | • | New Delhi, India | 1 | | Boston 63, Massachusetts | 1 | Professor Georges Darmols | | B -4 | | | | | Professor Georges Darmols
Director, Institute de Statistique
University di Paris
11 Rue Pierre Curle
Paris 5, France | | Professor Sigeiti Moriguti
Syoan Minamimati 6
Suginami-ku, Tokyo, Japan | | | Professor Seymour Sherman
Department of Mathematics | | 11 Rue Pierre Curie | | Suginami-ku, Tokyo, Japan | 1 | | Wayne State University
Detroit 2, Michigan | 1 | Paris 5, France | 1 | | | | Detroit 2, michigan | • | | | R. G. Narasimhan
SRC Unit Calcutta | | | Mr. Walter Shewhart | | Professor R. Fortet
Institut Henri Poincare
Paris , France | | Indian Statistical Institute | | | Bell Telephone Laboratories, Inc. | 1 | Paris, France | 1 | Indian Statistical Institute
9B Esplanade East
Calcuita 1, India | 1 | | Murray Hill, New Jersey | 1 | | | | - | | Dr. Rosedith Sitoreaves | | Dr. Geoffrey Gregory 4, Osborne Grove | | H. D. Shourte
Director | | | Teachers College | | Liatley, Cheadle
Cheshire, England | 1 | National Productivity Council | | | Teachers College Columbia University New York 27, New York | 1 | Cuesula, cultura | • | National Productivity Council Golf Links New Delhi, India | 1 | | • | | A. Hald | | New Deins; trials | • | | Dr. Milton Sobel | | A. Hald
Feresovel 83
Virum, Denmark | 1 | P. V. Sivaramirishan | | | Statistics Department
University of Minnesota
Minneapolis , Minnesota | | 4 ifum, Delmark | | P. V. Sivaramirishan
SQC Unii, Indian Statistical Inst
Queens Road, Government Offices
Building
Bombay, India | | | Minneapolis, Minnesota | 1 | De. H. C. Hamaker | | Building | _ | | | | Dr. H. C. Hamaker
Philips Research Laboratories
Eidenhoven, Hetherlands | 1 | Bombay, India | 1 | | Professor Frank Spilzer
Department of Mathematics
University of Minnesota
Minneapolis , Minnesota | | Eldenhoven, Metherlands | 1 | Malmanakhus kana | | | University of Minnesota | 1 | Mar CO Mill | | Srinegabhushana
SQU Unit Bangalore
96 SKSJ Technological Inst.
Bangalore 1, India | | | Minneaports, Minnesota | • | Statistical Advisory Unit | | 96 SKSJ Technological Inst.
Bangalora 1, India | 1 | | Mr. Arthur Stein | | Mr. I. D. Hill
Statistical Advisory Unit
Ministry of Supply
London W. 1, England | 1 | | • | | Mr. Arthur Stein
Cornell Aeronautical Lab., Inc.
P. O. Box 235
Buffalo 21, New York | | | _ | Professor Eduardo Valenzuela | | | Buffalo 21, New York | 1 | Professor M. G. Kendall | | Professor Educado Valenzuela
Republica 517-CIEF
Santiago, Chife | 1 | | | | Professor M. G. Kendall
London School of Economics
London, England | 1 | Saidings, Colle | • | | Professor W. Allen Wallis
School of Business | | | - | Mr. Cesaren Villesas | | | University of Chicago
Chicago 37, Illinois | | Professor A. Walther | | Inst. de Matematica y Estadística | | | Chicago 37, Illinois | 1 | Professor A. Walther
Technische Hochschule
Darmstadt, Germany | 1 | Mr. Cesaren Villegas
Inst. de Matematica y Estadística
Av. J. Herrera y Reissig
Montevideo, Uruguay | 1 | | Section Miles | | | • | | | | Dr. Irving Welss The Mitre Corporation | | | | | | | Bedford, Massachusetts | 1 | | | | | | | | | | Additional copies for project leaders
and assistants, office file, and
reserve for future requirements | | | Captain Surion L. Weiler | | | | reserve for future requirements | 70 | | Captain Surion L. Weiler
AFPR Office
Martin Aircraft Corporation
Denver, Colorado | 1 | | | | | | Denver, Colorado | | | | Contract Norr 225(53)
May 1961
(425) | | | | | | | (425) | | | | | | | | |